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The Heitler and Ma approach to resonance fluorescence of 
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Institute of Chemistry, A Mickiewicz University, 60-780 Poznali, Grunwaldzka 6, Poland 

Received 31 August 1978 

Abstract. The spectral intensity distribution of resonance fluorescence radiation emitted by 
N two-level atoms is calculated for the case of a weak electromagnetic field. Using these 
results the spectrum is discussed in terms of the number of atoms, their localisation and the 
orientation of the transition dipole moments. It is shown that the spectrum can be expressed 
as a sum of Lorentzian lines only in some specific cases. The general condition describing 
these cases is given. 

1. Introduction 

The theory of resonance fluorescence of one atom placed in a weak electromagnetic 
field (Weisskopf 1931, Heitler 1954) can be applied to an N atom system only in the 
case in which each atom interacts with the radiation independently of the others. This 
assumption is equivalent to a neglect of photon exchange between the atoms. It is well 
known, however, that photon exchange is essential in the processes of interaction 
between many atoms and an electromagnetic field. As a consequence, the N atom 
system should be considered as one quantum system (Dicke 1954). 

Calculations in the case of resonance fluorescence of two two-level atoms in a weak 
electromagnetic field show that the photon exchange causes dipole-dipole interactions 
between the atoms and, hence, characteristic changes in the emission spectrum. Two 
Lorentzian lines originating from the emission of symmetric and anti-symmetric 
two-atoms states are split proportionally to the interaction energy of the atoms 
(Chang and Stehle 1971, Fontana and Hearn 1967, Hearn and Fontana 1969). Thus 
the resonance fluorescence spectrum is similar to the spontaneous emission spectrum 
(Stephen 1964, Czarnik and Fontana 1969, Lehmberg 1970) but because the initial 
conditions are different the lines have different heights (Czarnik and Fontana 1969). 

In the present paper the intensity distribution of radiation emitted in resonance 
fluorescence is calculated for the case of N two-level, identical atoms with definite 
localisations. It is assumed that the atoms interact with a weak electromagnetic field 
and that only one atom in the N atom system can be excited. The intensity distribution 
is obtained by using the Heitler and Ma method of solving the time-dependent 
Schrodinger equation (Heitler and Ma 1949, Heitler 1954). However, the rotating 
wave approximation (RWA) which is usually applied along with the Heitler and Ma 
method (cf Agarwal 1974) is not used. The anti-resonance components of the inter- 
action Hamiltonian, neglected in the RWA, are necessary to obtain the correct form of 
the cooperative energy shifts (Knight and Allen 1973, Milonni and Knight 1974) from 
which the spectral line shifts are determined. 
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2. Solution of Schrodinger equationt 

The 
has the form 

Hamiltonian of the N two-level atoms interacting with an electromagnetic field 

Hs =&+A (1) 

where I?o = f i A  +I& and 

is the Hamiltonian of N isolated atoms with excitation energy ko.  &f is the operator of 
the z-th component of energetic spin of j-th atom. 

Next 

is the Hamiltonian of the free field, where k = ik/ and k is the wave vector of the 
electromagnetic field. 

The operator fi is the Hamiltonian of the interaction between the atoms and the 
field. In the dipole approximation 

N 

A= 1 Hl 
j = l  

(4) 

where the coupling constant gk; has the form 

gkj = i ( 21rk I  V)"'d eik.'ldj. ek ( 5 )  

and dd, is a dipole transition moment for two levels of the j-th atom. d, denotes the 
versor of the dipole moment and Idl 1 = 1. d is the modulus of the dipole moment which 
is the same for all atoms. t!k is a polarisation versor of the electromagnetic wave. r, is a 
position vector of the electron in the j-th atom. 

The sum over the wave vector k in  (4) includes the sum over the photon polarisation. 
Commutation rules of spin and field operators are as follows 

The other commutators are equal to zero. 
The time-dependent Schrodinger equation for the system of interest has the form 

The Heitler and Ma (1949) method will be used to solve equation (7). For this purpose 

+ h = c = m = 1 units are used. 
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the time-dependent state vector Ix(t)) is given by the expression 

Ix ( t ) )  = C b,(t) e-iE-'Ixn) 
n 

where Ix,) are the eigenstates of the Hamiltonian f i0  with energies E,. We consider 
only the following states: 

(i) The initial state with energy Eo. All atoms are in ground states and there are nk 

photons in the field. 

i = l  

(ii) The real intermediate states with energies E i k .  Only one atom is excited and one 
photon is absorbed from the field 

(iii) The virtual intermediate states for which the energy is not conserved (i.e. with 
energy Eiikkf differing from the energy of other states by much more than the level's 
width). Two atoms are excited and there is an additional photon with energy k' in the 
field 

(iv) The final state with energy E f k k s .  All atoms are in the ground state again and 
there is an additional photon with energy k' in the field 

In all these cases \io) and l i e )  are the vectors of the ground and excited states of the i-th 
atom, respectively. Ink, nk,) is the state vector of the field in the Fock representation in 
which there are nk + n k ,  photons with energies k and k' and polarisations e k  and ekr, 

respectively. 
The states described by the vectors in (9), (10) and (12) have been applied many 

times in problems of interaction between atoms and a weak field (Fontana and Hearn 
1967, Hearn and Fontana 1969, Czarnik and Fontana 1969, Hutchinson and Hameka 
1964, Freedhoff and van Kranendonk 1967). The virtual states given in (11) are 
considered in order to include in the calculations the anti-resonant components d:&f 
and â ,&; of the interaction Hamiltonian. These components are often neglected in the 
case of a weak field because it is assumed they are insignificant (Louise11 1964). The 
anti-resonant components cannot be neglected when cooperative energy shifts occur in 
the calculations (Knight and Allen 1973, Agarwal 1973, 1974) and the rotating wave 
approximation has not been used in those cases (cf, for example, Milonni and Knight 
1974). Thus calculations in the present paper differ from the preceding ones based on 
the Heitler and Ma method and they do not require an additional assumption about 
atom interaction (cf Fontana and Hearn 1967 and the discussion of their paper by 
Chang and Stehle 1971). 

The definition of states Ix,) in (8) allows one to write an explicit form of the 
equations for the probability amplitude of the states Ix,). According to the Heitler and 



1742 R Pyialski 

Ma method (1954) we have 

1 -l  

b n ( t ) = - /  i +m dE[E-EO+IT(E) Wn(E)ei(En--E" 
21r -m 2 

and WO= 1. The quantities T(E)  and Wn(E)  are given by equations 

m=O 
n m#O 

where Hmn =kmIfiIxn).  

occupied. 

form 

These equations contain the initial condition, i.e. for t = 0 only the state 10) is 

Making use of the properties of the state vectors (9-12) we rewrite (14) in matrix 

( E  -Efkk') w f k k '  = HfkkjW 
AW=Ho 

1 

2 k 
- -I'(E) = 1 H: W 

where W, Ho and Hfkk,  are column matrices 

and A is a square matrix (N x N) of the following elements 

The quantities ymn are 

where t ( x )  = P ( l / x )  - i .rra(x) and P denotes the principal value in the Cauchy sense. 

fluorescence. Their solutions can be also written in matrix form 
The equations (15-17) are equivalent to the Schrodinger equation (7) for resonance 
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i - - T(E) = C H: A-'Ho 
2 k 

if only one assumes that the matrix A is non-singular. 

1743 

(25) 

3. Intensity distribution of emitted radiation 

Using the solutions (23-25) and integral transformation (13) it would be possible to 
obtain the time-dependent state vector (8) but the vector state is not necessary to 
calculate the emission spectrum because this spectrum is given by the probability of the 
occupation of the final state for time t + CO. According to the Heitler and Ma method 
(1954) we write 

The solitary index ' f '  in this and the next equations denotes the quantity that should be 
calculated for E = & & * .  

Now we define two Hermite matrices 

and use solution (24) to write the occupation probability (26) in another form 

where Tr means the trace of a matrix. 

From (28) we derive the intensity distribution of the emitted radiation by integration 
over the orientation and summation over the polarisation of emitted and incoming 
photons and by summation over the frequencies of the incoming photons. Here we 
assume a continuous spectrum of incoming radiation. Thus the intensity distribution 
has the form 

I(A) = yz Tr[(FA;')+(A;'F)] (29) 
where 

A f = y  ( A I -  (30) 

(F)ij ={(die  dj>io(koRij)+t[3R,'(di.Rij)(dj.Rij)-di. djljz(koRij))(l -Sij)+&j 

(V)ij = -${(di. dj)j-l(koRij) +t[3Rt2(di .  Rij)(dj. Rij) -di . djlj-s(koRij))(l - & j ) .  

( 31 )  

(32 )  
The quantity y is the decay rate of one isolated atom 

y = $1d12k:. (33 )  

A = ( k o  - k ' ) /  y is a variable determining the deviation from resonance; 1 is the unit 
matrix ( N  x N ) ;  j n ( x )  are spherical Bessel functions of n-th order; Rii =Ri  -R, where 
Ri, Rj are the position vectors of the i-th and j-th atoms and Rii = lRijl 
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In the result (29) the non-cooperative energy shifts have been neglected. They arise 
in resonance fluorescence just as in the spontaneous emission of N two-level atoms (cf 
Saunders and Bullough 1973). These shifts do not modify the spectrum because the 
energies of all intermediate states are shifted by the same value. Moreover, we have 
assumed that the size of atoms is much smaller than the resonance wavelength of the 
radiation and hence 

(34) exp(ik . ri) = exp(ik. R!). 
This approximation is called the relative dipole approximation. 

4. Properties of the emission spectrum 

The expression (29) permits an easy discussion of the emission line shape in resonance 
fluorescence of N atoms. We rewrite (29) in a convenient form 

Z(A) =Tr{[F-'(Al- V)]2+al}-1 (35) 

which is equivalent to (29) if matrix F is non-singular. 

jointly over the matrices F and V ,  i.e. instead of (35) we may write 
The intensity distribution (35) is an invariant of the unitary transformation carried 

Z(A) =Tr{[$-'(Al- ?)]*+al}-* (36) 

$=" (37) 

where 

and M is any unitary matrix (M' = M-' ) .  
The matrices F and V are normal (i.e. real and symmetric). If we set up a suitable 

matrix M it is possible to diagonalise matrix F or V. In the particular case matrices F 
and V commute, i.e. when 

[F, VI = 0 (38) 

the matrix M may diagonalise both F and V. 
It can be proved that the unitary transformation (37) is equivalent to a change of the 

real intermediate states (from states lik) to others which are their linear combination). 
These new intermediate states are simply connected with matrix M :  

lki) = M*lkk) (39) 

I I x ~ ) ~  = (Ilk)I2k) . . INk)). (40) 

Thus if matrices F and V commute and suitable real intermediate states are set up then 
the intensity distribution may be expressed by two diagonal matrices 2~ and PD (the 
index 'D' denotes the diagonal form of the matrix). Therefore 

Z(A) =Tr{[&' ( A I -  ?D)]2+$1}-1 (41) 

where 

or 
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Each component of the sum (42) is a Lorentzian function of the variable A and describes 
the intensity distribution of radiation emitted by one intermediate state defined by (39). 

Let us consider a case when matrices F and V do not commute. Then only one of 
them may be diagonalised by the matrix M. The equation (42) is invalid and it is 
impossible to express the intensity distribution I(A) by the sum of the Lorentzian 
components. Thereby we have an important result: commutator (38) is a condition 
which determines whether the spectrum is a sum of Lorentzian lines or not. 

Now we give more detailed properties of the spectrum in both cases. If [F, VI = 0, 
the spectrum consists of N Lorentzian line:. The i-th of them is shifted in relation to the 
line of the isolated atom by the value of (VD)+ Its halfwidth is equal to (ED);;. The sum 
of all line shifts is equal to zero. 

and the sum of the halfwidths is N times greater than the half width of one isolated atom 

Both ( ?D)ii and (@D)ii  have a cooperative character. (?& is the cooperative energy 
shift (and in the case of interest it is also a cooperative line shift). (E& is the 
cooperative line width. 

If [F,  V ]  # 0, the intensity distribution is expressed by NZ positive defined rational 
functions which are non-Lorentzian ones. The detailed form of these functions may be 
obtained by writing out expression (36) in which the matrix F is diagonal. 

Now we will consider some special cases. First, we assume that all interatomic 
distances are much greater than the resonance wavelength: 

k&j >> 1. (45) 
Then the matrices F and V commute and have simple forms 

F = l  v=o. 
The intensity distribution (42) is 

I(A) = N/(Az +$) (47) 

i.e. it is expressed by N identical Lorentzian lines which are characteristic for the 
resonance fluorescence of one isolated atom (Weisskopf 1931, Heitler 1954). 

In the opposite case 

koRij << 1 (48) 
and the system fulfilling this condition is called a ‘small sample’. Now we have 

(F)ij 1 

( V ) ,  ~ ( k ~ R , ~ ) - ~ [ l  -3RiZ(d .  Rij)2](1 -6ij) 

and in (50) the orientations of the transition dipole moments of all atoms are assumed to 
be parallel to the versor d. Equation [F, VI = 0 is satisfied only in specific cases. This is 
easily seen from its equivalent form (together with (49)) 
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To obtain the intensity distribution we cannot apply (35) because the matrix F is 
singular. The equation (29) however is still correct since the matrix A is always 
non-singular. If we set up a suitable real intermediate state so that the matrix F is 
diagonal then the intensity distribution has the form 

I ( A )  = N2/(/Al- ? l / / ( A l -  ?)(iijI)’ + N 2 / 4  (52) 

where /XI and l(X)(lljl denote the determinant and complementary minor of element 
(1 1) of matrix X, respectively. This result gives the spectrum of the radiation emitted 
from the totally symmetric state of N atoms, i.e. from the state 

Other intermediate states do not radiate. This property is characteristic for small 
samples in spontaneous emission (Dicke 1954) as well as in resonance fluorescence 
processes. 

The shape of the emission line for the small sample, given by (52), depends on the 
number of atoms. For one and two atoms we obtain Lorentzian lines 

where V = ( V)12. 

of two atoms. 

have 

The spectrum ( 5 5 )  is similar to Stephen’s (1964) result for the spontaneous emission 

In the three-atom system the line may be of non-Lorentzian shape. From (52) we 

where Vi = ( V ) +  

Lorentzian line is obtained 
Condition (5 1) is fulfilled only in the particular cases when V12 = VI3 = V23 = V and 

I ( A ) N = 3  = 9/[(A-2V)’+9/4]. (57) 

It is worth noting that the equality V12 = V13 = V23 may be an effect of the specific 
arrangement of the atoms in space. Thus a change in the mutual localisation of the 
atoms may entail an essential modification of the line shape. It was shown by Stephen 
(1964) that the quantity y (  V)ii  is the energy of the dispersion interaction between the 
atoms in the excited state and atoms in the ground state. According to ( 5 5 )  the 
dispersion interaction in a two-atom system causes a shift of the line only. A greater 
number of atoms may also change the Lorentzian line shape and give lines which are 
described by other rational functions. To visualise the difference between the two cases 
it is sufficient to compare equations (55) and (56) and to note that the intensity 
distribution (56) may have several maxima while the distribution (55) has only one 
maximum. 

It is necessary to point out that results for a small sample lose their meaning when 
the parameter koRii tends to zero since the energy of the dispersion interaction tends to 
infinity owing to the breaking of the dipole approximation (Knight and Allen 1973). 



Resonance fluorescence of N two-level atoms 1747 

As a final case we may consider a system with interatomic distances comparable with 

koRij a: 1. (58)  

As in the case of a small sample, only the two-atom system has the Lorentzian spectrum 
(here we neglect the trivial case N = 1). The intensity distribution has the form 

the resonance wavelength 

where V = ( V)IZ and F = (F)Iz. 
Two Lorentzian lines are connected with the emission from the symmetric and 

anti-symmetric states of two atoms, respectively. The half width of these lines are 1 + F 
and 1 - F respectively. Expression (59) is identical to that of Chang and Stehle (1971). 

An analogous result for the spontaneous emission of two two-level atoms 
(Lehmberg 1970) is 

l + F  + 1-F 
(A-  V)’+$(l+F)’ (A+ V)’+$(l-F)’* 

I (A)  = 

Comparing (59) with (60) illustrates the similarities mentioned in the introduction 
between the spectra of resonance fluorescence and spontaneous emission. 

The intensity distribution for a greater number of atoms in the case of koRij = 1 may 
be investigated numerically using equation (29) or (35). It is a function of the mutual 

b 

Figure 1. Intensity distribution of resonance fluorescence radiation emitted by four atoms 
placed on a straight line; koR12 = koR13 = koRz3 = p  = 1 and a is the angle between the 
vector of the transition dipole moment (the same for all atoms) and the straight line defined 
by the atoms. 
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arrangement of atoms and the orientation of the transition dipole moment and as a rule 
is expressed by non-Lorentzian lines. To illustrate this case we present the spectra of 
four atoms placed on a straight line; koRI2 = koRI3 = kOR23=p and Q is the angle 
between the transition dipole moment d of all the atoms and the straight line defined by 
the atoms. In figure 1 it is assumed p = 1 and Q is variable. The set of spectra shows that 
with a fixed arrangement of atoms the change in the orientation of the dipole moment 
gives a change in the position of the spectral lines as well as in their halfwidths and 
heights. The number of lines in the spectra varies also. It is worth noting that the 
spectrum for Q = 60" has a shape similar to the Lorentzian spectrum of four atoms 
interacting with an electromagnetic field independently of each other. This effect is a 
consequence of the approximated equality 

v=o (61) 

which is valid at Q ~ 6 0 " .  It means that with the atomic positions and directions of 
dipole moments as above, the dispersion interaction between atoms is of small 
significance. Thus the change in the dipole moment orientation with a fixed atom 
arrangement may give a substantial change in the line shape. It is an effect similar to 
that mentioned above for a small sample. 

I: 

6 
Figure 2. Intensity distribution for the same system as figure 1 with a =O". 

In figure 2 Q = 0" is assumed and the parameter p is changed. Here the 
modifications of the spectra are caused by the changes in interatomic distances when the 
configuration of atoms and dipole moment orientations are kept constant. When p 
increases, the spectrum becomes identical with a Lorentzian spectrum of four isolated 
atoms (see (47)). 

5. Conclusions 

The emission spectrum of resonance fluorescence has been calculated for N two-level 
atoms with fixed positions. The basic assumption i s  that only one atom in the system 
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may be excited by the external electromagnetic field. It is valid when the intensity of the 
radiation scattered by the atoms is low. The calculations have been performed using the 
Heitler and Ma method. It is worth noting that the method is very useful for intensity 
distribution calculations because of its generality and mathematical simplicity and the 
ease of the physical interpretation of the results. The wider comparison of the Heitler 
and Ma method with others was given by Agarwal(l974). The real and virtual states in 
the expansion of the time-dependent state vector have been chosen to satisfy the above 
assumption and, moreover, they allow a solution of the problem without the rotating 
wave approximation (RWA). Doing without the RWA is an important element in the 
calculations since it ensures the proper form of cooperative energy shifts. Thus the 
approach of the present paper differs from others which use the typical Heitler and Ma 
method for problems of interaction between atoms and a weak field. 

The intensity distribution derived (equation (29)) is expressed by two matrices F 
and V. Their elements describe the cooperative properties of the N-atom system 
interacting with field. The commutator of the matrices F and V qualifies an important 
feature of the spectrum, namely the possibility of representing the spectrum as a sum of 
Lorentzian lines. If matrices F and V commute then the spectrum is a sum of 
Lorentzian lines. The number of lines is equal to the number of atoms. The eigenvalues 
of F and V give halfwidth and shift of the lines, respectively. Each line is connected 
with the emission of radiation by one intermediate state. If F and V do not commute 
then the spectrum consists of N2 components. Each of them is a positive defined 
rational function. 

The results above may be applied to the determination of the properties of the 
spectrum of a weak electromagnetic field scattered by arbitrary two-level systems in 
relation to the number of systems, their spatial distribution and orientation of the 
transition dipole moments. 
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